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Introduction

Background -------- Drug -Disease Associations
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Introduction

Motivation

Drug - Disease associations provide important information for drug discovery

and drug repositioning
Wet experimental identification is time  -consuming and labor -intensive

Computational methods can guide experiments to identify drug -disease

associations



Introduction

A Research Status
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Introduction

Our Method

Network topological similariybased inference method (NTSIM)



Materials and Method

Dataset

Known

Name Drugs Diseases o
Assoclations

Our Dataset 269
PREDICT Dataset 593

TL-HGBI Dataset 1409
LRSSL Dataset 763
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Materials and Method

DOE

Disease association profile

Drug association profile

G-I

Drug-disease association network Known drug-disease associations

Fig.1l. The drug-diseaseassociationbased network, diseaseassociationprofiles
and drug associationprofiles
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Materials and Method

Linear Neighborhood Similarity

Hypotheses:

|) Data points in the feature space can be considered to be linear (S.T

Roweis, 2000)

II) Each data point can be reconstructed by a linear combination of its

neighbors (Wang, 2008)



Materials and Method

Linear Neighborhood Similarity

@ Select K neighbors (2 Reconstruct with linear weights (3 Linear neighborhood similarity
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Materials and Method

The drug -disease association inference methods

the network topological similarithased inference method (NTSIM)
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Experiments and Discussion

Cross Validation and Evaluation Metrics

randomly splits known drudisease

five-fold crossvalidation o ] .
assoclations into five subsets

(AUC), (AUPR), (SEN)

evaluation metrics (SPEC), (PRE), (ACC) (F)



Experiments and Discussion

Performances of prediction models
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Experiments and Discussion

Performances of prediction models
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Experiments and Discussion

Comparison of Different Features
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Experiments and Discussion

Compared with benchmark methods
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Experiments and Discussion

Compared with benchmark methods

Methods
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Experiments and Discussion

Independent Experiments

a):PREDICT dataset b):TL-HGBI dataset c):.LRSSL dataset

PREDICT TL-HGBI LRSSL
our method

our method ] our method
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Experiments and Discussion

Case Study

NO. Drugs Diseases Evidence
Methadone Seizures https://www.drugs.com/methadone.html
http://factmed.com/drugcover.php?drugname
=Amiodarone
Clozapine Headache https://www.drugs.com/clozapine.html
http://www.medindia.net/doctors/drug_infor
mation/morphine.htm
Methamphetamine Hypotension https://www.drugbank.ca/drugs/DB01577
Risperidone Anxiety Disorders N.A.
Amphetamine Catalepsy N.A.

Caffeine DrugInduced Liver Injury N.A.
https://www.drugs.com/mtm/chlorpromazine.
html

Clozapine Sleep Initiation and Maintenance Disorders N.A.

Amiodarone Hypertension

Morphine Tremor

Chlorpromazine Nausea




Conclusion

Strengths:

1) A novel similarity measure for graph, robust for grdjased similarity methoo
Il) for largescale data, fast speed

1) little input, but highaccuracy performance

Limitations:

1) Cold start problem

II) Failing to distinguish two kinds of drutjsease associations
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